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A UNIFIED THEORY OF NON-IDEAL GAS LATTICE BOLTZMANN MODELS

LI-SHI LUO*

Abstract. A non-ideal gas lattice Boltzmann model is directly derived, in an a priori fashion, from the

Enskog equation for dense gases. The model is rigorously obtained by a systematic procedure to discrctize

the Enskog equation (in the presence of an external force) in both phase space and time. The lattice

Boltzmann model derived here is thermodynamically consistent and is free of the defects which exist in

previous lattice Boltzmann models for non-ideal gases. The existing lattice Boltzmann models for non-ideal

gases are analyzed and compared with the model derived here.

Key words, lattice Boltzmann method, kinetic theory, Enskog equation, phase transitions, multi-phase

fluids, fluid dynamics

Subject classification. Fluid Mechanics

1. Introduction. In recent years, there has bccn significant progress in the development of the lattice

Boltzmann equation (LBE) method [1, 2, 3, 4, 5], a novel technique developed for modeling complex systems.

One particular application of the lattice Boltzmann method which has attracted considerable attention is the

modeling of inhomogcneous fluids, such as multi-phase or multi-component fluids [6, 7, 8, 9, 10]. These flows

are important, but are difficult to simulate by conventional techniques of solving the Navier-Stokes equations.

The main difficulty conventional techniques face is the existence of interfaces in inhomogcneous flow. There

is ample evidence that the lattice Boltzmann models based on mcsoscopic theory are particularly suitable

for these systems [6, 7, 8, 9, 10]. There arc fundamental reasons for the success of the LBE models. Besides

their broad applicability, the LBE models can also serve as new paradigms in nonequilibrium statistical

mechanics, much like the Ising model in equilibrium statistical mechanics. Many hydrodynamic systems

far from equilibrium are difficult to simulate by using the Boltzmann equation directly. The LBE method

provides a novel and efficient means to simulate systems far from equilibrium. The LBE models do not start

at the macroscopic level; instead, they start at the mesoscopic level at which one can freely use a "potential"

to model interactions in the system. Macroscopic or hydrodynamic effects naturally emerge from mcsoscopic

dynamics, provided that the mesoscopic dynamics possess the correct and necessary conservation laws and

associated symmetries.

Historically, the lattice Boltzmann equation was first developed empirically [1, 2, 3] from its predecessor

the lattice-gas automata [11, 12]. This empiricism influences even the most recent lattice Boltzmann

models [6, 7, 8, 9, 10]. Empirical lattice Boltzmann models usually have some inherent artifacts which arc

not yet fully understood. One particular problem with multi-phase or multi-component lattice Boltzmann

models is the thermodynamic inconsistency: the equilibrium state in these models cannot be described by

thermodynamics [8, 9]. Although this issue has been raised previously [8, 9], no progress has been made in

solving this problem, despite its paramount importance.

It has been recently demonstrated [13, 14] that the lattice Boltzmann equation can be directly derived
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from the continuous Boltzmann equation. The method of Refs. [13, 14] is a general procedure to construct

the lattice Boltzmann models in a systematic and a priori fashion. Through this procedure wc can better

understand the approximation made in the lattice Boltzmann equation. In this paper, we apply the method

of Refs. [13, 14] to analyze the lattice Boltzmann cquation for multi-phase fluids with non-ideal gas equation

of state. We derive the lattice Boltzmann equation from the Enskog equation for dense gas in the presence

of an external force. Wc obtain a lattice Boltzmann equation for isothermal multi-phase fluids which has

the required thermodynamic consistency. In addition, we comr_arc our model with the existing ones.

2. Enskog Equation and LBE Model for Non-Ideal Gases. It is well known that the original

Boltzmaan equation only describes rarefied gases; it does not describe dense gases or liquids. In the Boltz-

mann gas limit (BGL), N ---* oc, m --* 0, and r _ 0, where N, m, and r are the particle number, particle

mass, and interaction range respectively, and Nm _ finite, Nr 2 ---, finite, and Nr 3 --_ O. Thus, in the

BGL, the mean frec path l _,, 1/Nr 2 remains constant, while the total interaction volume Nr 3 goes to zero.

Therefore, in the strict thermodynamic sense, the Boltzmann equation only retains the thermodynamic prop-

crtics of a perfect gas there is no contribution to the transport of molecular properties from interparticlc

forces, although collisions influenced by interparticlc interaction are considered. In order to properly describe

non-ideal dense gases, the effect of finite particle size must be explicitly considered. It was Enskog who first

extended the Boltzmann equation to dense gases by including the volume exclusion effect [15], which leads to

a non-ideal gas equation of state. The Enskog equation [15, 16, 17] explicitly includes the radius of colliding

particles, r0, in the collision integral:

(2.1a)

(2.15)

Off + _.Vf ÷ a._7_f : J,

/dl_ 1 [g(x + roi')f(x, _')f(x + 2roi', _'1) - g(:r - ro_')f(x, _)f(x - 2ro+, _1)] ,
J

where f is the single particle (mass) distribution function, _ and a are particle velocity and acceleration, g is

the radial distribution function, _ is the unit vector in the direction from the center of the second particle of

f(x, _1) to the center of the first particle of f(x, _) at the instant of contact during a collision, and/_ is the

collisional space of the second particle of f(x, _1). If wc expand the collision operator J in a Taylor series

about x, use the BGK approximation [18, 17, 19], and assume t he fluid to bc isothermal and incompressible

[20], wc have:

(2.2a)

(2.25)
Off + _.Vf + a.Vcf = -A[ f - f(o,] + j,,

j, = _f<0) bpg (_ - u) "V ln(p2g),

where A is the relaxation time and f(°) is the local Maxwell equilibrium distribution function given by

(2.3) f(o, = p (2zrO) D/2 exp [--(_ - u)2/20] ,

where D is the dimension of the _ space; p, u, and 0 = kB_'/m arc the mass density, the macroscopic

velocity, and the normalized temperature (per unit mass); and kB and T are the Boltzmann constant and

temperature. The additional collision term in Eqs. (2.2), J', des, Tibes the volume exclusion effect [20], where

g = g(bp), and b is the second virial coefficient in the virial expansion of the equation of state. It is assumed

that the acceleration a is due to an external potential U(x) (per unit mass): a = -VU.

If the acceleration a is assumed to be a constant within tie distance travel over a small time interval

St, then a formal solution of Eq. (2.2) can bc obtained by integrating along a characteristic line _ over the



timeinterval5,:

1 2
(2.4) f(x + _St + -_aSt, _ ÷ aSt, t + St) = e &g/X f(x, _, t)

+_e e,_/x et'9/af(°)(x+(t' + at '2,(+at',t+t')dt _

+e -_'g/'x e''g/'x S(x + _t r + at '2, _i + a t_, t + tr) dt'.

If we assume that 5t is small enough and both f(°) and f are smooth enough in phase space, we can neglect

the terms of order 0(5_) or smaller in the Taylor expansion of Eq. (2.4), and obtain [13, 14, 20]:

(2.5) f(x + _5,, _, t + St) - f(x, _, t) = -g [f(w, _, t) - f(°)(x, _, t)]
7"

+J'(x, _, t)5,- a.VJ(x, _, t)St,

where _- =/VSt is the dimensionless relaxation time. It is obvious that the accuracy of the above equation

is only first-order in time [O(St)]. Consequently, thc accuracy of thc lattice Boltzmann models derived from

the above equation is also first-order in time at best.

For isothermal fluids, the equilibrium distribution function can be obtained by truncation of the Taylor

expansion of f(°) up to second-order in u:

(2.6)

wherc

(2.7)

f(cq)=pw(_) [1+ _+

= exp (-¢=/20)

The phase space discretization has to bc done in such way that not only all the hydrodynamic moments,

but also their fluxes are preserved exactly. This is accomplishcd by using Gaussian quadrature to compute

the moments [13, 14].

Following the procedure described in Rcfs. [13, 14], wc can obtain the LBE models in both 2D and 3D

lattice space [13, 14]. We use the 2D nine-bit model as a concrete example here. In this case, we have thc

following equilibrium distribution function [13, 14]:

3(ea. u) 9(e_. u) 2 3u 2](2.8) f(eq) = W_ p 1 -f- C2 q- 2e 4 2c 2 ,

where

4/9, c_ = O,
w_ = 1/9, _ = 1, 2, 3, 4,

1/36, _ = 5, 6, 7, 8,

(2.9)

(0, 0), =0,
(2.10) ea = (cosCa, sin¢_) c, a = 1, 2, 3, 4,

(cosec, sine,) v_c, a = 5, 6, 7 8,

6_ = (a- 1)7r/2 for a = 1 4, and ¢_ = (a- 5)zr/2 + 7r/4 for a = 5 8, and c = 5_/5t = v_, and 5_ is the

lattice constant. Note that 0 is a constant herc.



Theforcingterm,a.VJ, is unknown but it can be written in terms of an expansion in _ as follows:

[ c (1)_ ,:_)- _ ](2.11) a._f = pw(_) c (°) + i ",, +c,,j _iCj +"" .

If the above expansion is truncated, the first few coefficient _(n)¢-ili_...i, can bc easily obtained by using the

following moment constraints:

(2.12a) /d_ a.VJ = O,

./dg _ a. VJ = - pa ,(2.12b)

(2.12c) J d_ _,_j a. VJ = - p( aiuj + ajui ) .

Therefore, up to the order of O(u) and O(_2), wc have

(2.13) a._f = -pco(_)O -1 [(_-u)-A-O-l(_.u)_]-a.

Note that in the above expansion, only terms up to first order in u have been retained, because there is a

overall factor of _t in thc forcing term, as indicated in Eq. (2.5), and both 6t and u arc small parameters

of the same order in the Chapman-Enskog analysis of the lattice Boltzmann equation [20, 21, 22[. There

are other methods to compute the forcing term [20]. It shoul( bc strcsscd that every term in the Enskog

equation must be treated equally to maintain the same order o accuracy. Specifically, the expansion of the

forcing tcrrn must be of second order in ( and of first order in u, in order to be consistent with the expansion

of the equilibrium distribution function, given by Eq. (2.8).

Following the same discretization procedure for the equilibrium distribution function, we obtain the

forcing for the 9-bit model

-- C4 ec_ • a.

The above forcing term satisfies the discrete counterpart of Eqs. (2.12). If only the first two moment equations

in Eqs. (2.12) are satisfied, and the third constraint of Eq. (2.1:'_c) is replaced by Z_ e,_,iec,,j F,_ = 0 in the

discrete case, then, the forcing term reduces to F_ = -3wa pc- 2e,_. a. This is the forcing term often used

in the literature [21, 22].

The additional collision term J_ given by Eq. (2.2b) can be explicitly written in the discrete form:

(2.15) J_ = -f_(_q) bpg (e,_ - _).V n(p2g).

Including the discrctized J_, the lattice Boltzmann equation obi ained is:

(2.16) S_(x "_- eot_t, t _- 6t) -- Sa(x, t) _--- 1 I.[sa(_l_' 1_) -- f_(eq)(x' t)] g
T

-_ p 9 I_°_/(_, t) (e, - _).v(0_g) _, - F_ 6_.

The Navicr-Stokes equations derived from the above LBE mode are [20[:

(2.17a) Otp+ V.(pu) = 0,

(2.17b) Otu + u.Vu = -1VP + uV?u + a,
P



where the viscosity

(27 - g) 5_
(2.18) , -

6g 5t

and the pressure (or the equation of state) is given by

(2.19) P = p0(1 + bpg).

Obviously, the above is a non-ideal gas equation of state. For ideal gases such that b = 0 and g = 1, P

and l, reduce to previous results for ideal gases. The dependence of the viscosity v on g can be removed by

replacing g in the BGK collision term by 1.

Given the equation of state, the Helmholtz free energy density can be obtained as:

(2.20) ¢(p)= p / _dp= pO Ilnp + b/gdp I •

That is, with either P or ¢ given, one can derive all the relevant thermodynamic quantities from the frcc

energy function O. With the frcc energy and the equation of state defined, the Maxwell construction [23] to

determine the co-existence curve becomes physically meaningful and consistent. The phenomenon of liquid-

this model by changing the value of b/g dp (by adjusting b orgas phase transition can be simulated using
J

g) in the frcc energy density _ relative to the temperature 0 as indicated by Eq. (2.20).

3. Comparison with Existing Models. A comparison with the existing models [6, 7, 8, 9, 10] is now

in order. In the Shah and Chen model [6, 7], an arbitrary potential U(x) = U(p(x)) is explicitly given, and

the change of velocity u duc to U(x) is given by

5u = -VU(x) rS_ = a _-St •

By substituting u with u + 5u into the equilibrium distribution function, we have

[ 3(ea-u) 9(e_.u) _ 3u2] _3weep [_(e _u)+3_e,_].a_.St(3.1) f(cq) = w_p 1 + c_ + 2c_ 2c 2

In the above result, the first part is the usual equilibrium distribution which has an ideal gas equation of

state built in. The second part is supposed to account for interaction or non-ideal gas effects, which leads

to the identical forcing term given by Eq. (2.14). By combining the forcing term with the pressure in the

Navier-Stokes equation, i.e., VpO + VU = V(pO + U), the equation of the state becomes P = [pO + U(p)].

Thus, the non-ideal gas effects arc effectively mimicked by the potential U. Of course, the physical concept

of this approach is incorrect and the immediate shortcoming is that the heat flux, and hence the energy

balance equation, is incorrect [20]. Furthermore, the third part in Eq. (3.1), which is proportional to 52 and

nonlinear in a, is not consistent with what is obtained from Eq. (2.4).

We should also discuss a recent revision of the Shan and Chen model [10] in which a forcing term

proportional to f(eq) (e_ - u).FSt is derived with some crude approximations: the force F _ -VV -

bpOgV ln(p2g), and V accounts for the attractive part in the interaction. This model produces a non-ideal

gas equation of state, P = pO (1 + bpg) + V, as expected. However, the derivation of this model closely

follows the derivation of the previous model. Therefore, these two models share the same problems, such as

incorrect heat transfer.



A comparisonwith themodelproposedin [8,9]isslightlymoreelaborate.Stressingtheconsistencyof
thermodynamicsandbeinginspiredbyCahn-Hilliard's model [_4], Swift et al. [8, 9] start with a free energy

functional,

1(3.2) 02 = x _llVpll 2+o(p) ,

where _/, is the bulk free energy density. The free energy functional in turn determines the diagonal term of

the pressure tensor:

502

(3.3) e = p_p 02 = p - npV2p_ _ ilVpll2 '

where p = pg,' - g, is the equation of state of the fluid. The full pressure tensor is given by

(3.4) Pij = F 6_j + nOipOjp.

With Pi3 given, the equilibrium distribution function, f(eq), is constructed by not only satisfying the con-

servation constraints, but also producing the above pressure teusor by forcing the following constraint:

(3.5) E f(eq) ea,'ea,J = P,i "
Gt

It should be pointed out that in the context of Chapman-Enskog analysis, the presence of Vp related

terms in 02 and Pi9 is not justified at all the density gradient does not appear in the first order Chapman-

Enskog solution. Also the model produces a number of unphysical effects. First, the term related to

non-ideal gas effect misses a factor of (e_ - u), and is therefore not Galilean invariant, as previously noticed

[8, 9, 10]. Second, the term related to e_e_, denoted as G,je_,,_ea,j in Refs. [8, 9], is anisotropic, because

(7¢x = -G_y. Third, the ratio between the number of the rest particles and the number of moving particles

depends oil the local density gradient. It can bc shown that this ratio is directly related to temperature [25].

While the model is supposed to simulate an isothermal fluid, the temperature in this model may vary locally

depending on the density gradient. Also, the model cannot h.ad to the correct energy balance equation.

Furthermore, the pressure tensor P_j does not appear in the Na¢ier-Stokes equation derived from the model

[8, 9]. Therefore, the approach in deriving this model in Refs. 8, 9] is not only mathematically ad hoc and

inconsistent, but also physically incorrect.

It should also bc noted that the Hamiltonian approach [6, 7] and the frec energy approach [8, 9] are

indeed equivalent. Given the Hamiltonian of an interacting N-particle system:

(3.6) = + + -  Jl),
i=1 i<j

where (i and xi are the phase space of the/-the particle, mi is the particle mass, U(xi) is an external field

and ¢ij(Ix, - xj I) is a mean-field two-body interaction potentiel, the partition function is

(3.7) Z = _/ dxd_ exp(-7-_/kl_T) ,

where (x, _) represents the entire phase space of the N-partic e system. Consequently, the free energy is

given by

(3.8) 02 = -kBTlnZ.

Thus information is neither gained nor lost whether the problem is formulated in terms of _ or 02. The

advantage of using the free energy is that 02 is a global variabh,_ of state and therefore it is independent of

coordinates.



4. Conclusion. In summary,wchavecarriedouta systematicderivationof the latticeBoltzmann
equationdescribingmulti-phaseflowfromtheEnskogequation a physicallycorrectstartingpointfor
non-idealgases.Themodelderivedhereis frccof thedefectsof theexistingmodels.Theapproachis
rigorousandsystematic.Notonlytheequationofstatefornon-idealgasesisobtained,butalsotherequired
thermodynamicconsistencyisachieved.Also,theprocedureillustratedhereis generalandcanbceasily
extendedto otherlatticeBoltzmannmodelsfor complexfluids,e.g.,binarymixturesor multi-component
fluids.
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